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Information Content of Diffraction Experiments on Liquids 

and Amorphous Solids 
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Theoretical Chemistry Department University of Oxford, 
5 South Parks Road, Oxford OX1 3UB, England. 

(Received 4 July 1990) 

Starting with simple monatomic liquids such as condensed rare gases, the information that can he extracted 
from diffraction experiments is discussed. The rich interplay between atomic and electronic structure in 
liquid metals such as Na and K is emphasized: expanded Rb and Cs taken up the liquid-vapour coexistence 
curve towards the critical point are also mentioned. A liquid metal like Na is, in fact, a two-component 
system, Na' and electrons. Classical two-component systems are also considered, and specifically BaCI, 
which freezes into a fast-ion conducting phase. The structural theory of two-component liquids is extended 
to apply to amorphous Si, the 'second component' now being the bond charge. The way a combination 
of X-ray and electron diffraction can elucidate the nature of the local ordering, as well as the directional 
bonding, is stressed. There is clear evidence here for the bonding electrons. directly from the X-ray and 
electron scatteiing intensity. 

KEY WORDS: Partial structure factors, directional bonding 

1 INTRODUCTION 

That the short-range order existing in liquids such as condensed rare gases could be 
extracted from X-ray diffraction experiments has been known for a long time. If we 
write the intensity I of X-rays of wavelength E. scattered through an angle 2 0  by a 
liquid sample containing N atoms: 

4n sin 0 
I ( k )  = N f 2 ( k ) S ( k ) : k  = 7 

1" 

then S(k)  is the liquid structure factor, related to the pair correlation function g(r)  by 

S ( k )  = 1 + p [ g ( r )  - 11 exp(ik. r)dr, (1.2) s 
with p the atomic number density. If one considers neutron rather than X-ray 
diffraction, then the atomic scattering factor f ( k )  in Eq. (1.1) is replaced by a k 
independent neutron scattering length. 

It is fair to say that all simple liquids near their triple point have remarkably 
similar forms o f  S ( k )  and g(r).  In  one sense, this is disappointing, as a hard sphere 
model can account for a lot of features. However, on closer inspection, departures 
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134 N. H. MARCH 

from hard spheres become apparent and, we shall argue, it is these departures that 
are the matters of most interest for the chemical physics of condensed matter. 

In Section 2 therefore, we shall summarize what we can learn from S(k) measure- 
ments, taking as prototypes Ar and Na. Here theory is now relatively well developed, 
for such one-component liquids. Actually, in Section 5 we shall return to liquid Na, 
with some surprises to follow! 

Section 3 then takes two examples of ionic melts: RbCl and BaCI,, the latter, in the 
crystalline phase, being a fast-ion conductor: these also serve to introduce the 
structural description of two-component systems. 

The other examples both involve electrons in disordered systems: probed directly 
by X-rays, and also usefully by electron diffraction. Cases treated are SiOz and 
amorphous Si in Section 4, and also in Section 5, as already remarked, liquid Na. 
Section 6 discusses some promising future directions for experiment and theory. 

2 STRUCTURE AND FORCES IN SIMPLE MONATOMIC 
LIQUIDS NEAR TRIPLE POINT: e.g. Ar and Na 

One can usefully group properties that are expected to arise in S(k) and g(r )  according 
to first-principles liquid-state theory into three areas. 

2.1 Small ungle scuttering 

For van der Waals liquids such as Ar, the pair potential d(r)  at large r is expected 
to take the (non-retarded) form 

This was shown by Enderby, Gaskell and March' to lead to a small k expansion of 
the structure factor S ( k )  of the form 

(2.2) 

From the theoretical result (true far from the critical point) that at sufficiently large 
r the Ornstein-Zernike direct correlation function c(r) reflects the pair potential 4(r) 
through 

S ( k )  = S(0) + a2k2 + a 3 k 3  + ...  

40.) 
ki3T 

c(r) = - -, r large 

one derives, using (2.1) the result for the coefficient of the k3  term in Eq. (2.2): 

a3 = ~ 2 p p ( 0 ) 3 2 ~ 6 / i 2 k B ~  (2.4) 

and this result (2.4) has been tested by confrontation with the diffraction experiments 
of Yarnell, et al. for argon. The theoretical estimate of c6 is in good accord with 
that extracted from Eq. (2.2): the work of Robinson and March3 (see also Renne and 
Nijboer4) showing that a few percent reduction only in c6 is to be expected because 
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DIFFRACTION FROM DISORDERED SYSTEMS 135 

of the van der Waals interactions taking place in a dielectric liquid. The situation in 
liquid metals is more complex and is not accounted for by Eq. (2.2), as discussed by 
Matthai and Marchs. 

2.2 Freezing und melting criteria 

The second feature we focus on is the so-called Verlet rule6, that S ( k ) ,  as we cool 
down the liquid, approaches a maximum value at its principal peak of about 2.8, 
before freezing occurs. This, found by Verlet for Lennard-Jones liquids, also holds 
for simple metals, which, as pointed out by Ferraz and March’, are usefully described 
around the principle peak by the classical one-component plasma model (OCP). This 
OCP freezes when S ( k )  reaches a maximum of about 2.7, in accord with the X-ray 
experiments of Greenfield, Wellendorf and Wiser’ on liquid Na and K near the 
melting temperature T,,. Bhatia and March’ have shown that: 

i) There is no conflict between the Verlet rule for freezing and the Lindemann law 
for melting, which in turn  relates to 

ii)  The result, derived from the condition g(r = 0) = 0 in dense classical liquids: 

where 2Ak is the distance between the two adjacent nodes of S ( k )  - 1 embracing the 
principal peak. Silbert (private communication) has verified the approximate validity 
of Eq. (2.5) above from diffraction data on wide range of liquids. 

2.3 

An attractive possibility, pointed out some 25 years ago by Johnson and March”, 
is to extract the entire pair potential 4 ( r )  directly from diffraction measurements of 
S ( k ) .  Their work is taken, nowadays, to define the ‘inverse problem’ of extracting 
forces from structure. This has recently been brought to fruition, especially by 
Levesque. Reatto and Weis” and also by Dharma-wardana and Aers” (for a fuller 
review, see MarchL3). The idea is simply expressed. If we write, for a classical liquid 
y(r) in the Boltzmann form 

Inverse problem of‘ estructing ,fi)rre.s jioni meusured structures 

g(r,2) = exp( - F), 
then the potential of mean force U(r12)  can be used to construct the total force 
-?U(r12)/2rl acting for atom 1. In turn, this arises from the sum of the pair force 
-d4(r12)/drl exerted by atom 2 at separation r l z ,  and the contribution from the 
other atoms. Thus, we can write 

(2.7) 

the so-called force equation where the final term in Eq. (2.7) evidently involves the 
probability g(3’(rlr2r3)/g(r12) that a third atom is at r3 given atoms 1 and 2 at 
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136 N. H. MARCH 

Figure 2.1 
larger r is 
for large I 

Pair potential +(r)  for liquid Na at  melting point T, in units of f i - ’  = k,T,. Lower curve for 
obtained by inversion of structure factor S(k)  and is taken from Refs. 11 and 14. Upper curve 

’ is electron theory calculation of Perrot and MarchI4. 

r l  and r2. Eq. (2.7) is an exact consequence of classical statistical mechanics for a 
liquid with pairwise additive forces. Evidently, since U is known from g(r )  through 
Eq. (2.6), 4 ( r )  can be extracted only if knowledge of g(3’ is assumed. By an iterative 
predictor-corrector technique in which the predictor is the modified hypernetted- 
chain method, while the corrector is simulation, Levesque, Reatto and Weis have 
adopted the proposal of Johnson and March and have successfully extracted 4 ( r )  for 
Ar from simulation data and Na from diffraction measurements. This procedure is 
fully reviewed by ReattoI4: the potential +(r)  thereby obtained from S ( k )  for Na liquid 
near freezing is shown in Figure 2.1 

It is worth pointing out that approximate analytical theories are still of consider- 
able interest and these have taken two main directions: 

i) Theories leading to 

which were proposed by the writerI5, and have been developed recently by Gaskell 16, 

and 
ii) A theory, due to Barrat, Hansen and Pastore”, based not on the Kirkwood 

decoupling of g‘3) as a product of pair functions g(rI2)g(rz3)g(r3 1) but of the three-body 
Ornstein-Zernike function 

c ( 3 ) ( r ~ r ~ r 3 )  = t(rl Z)t(r23)t(r31) (2.9) 
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DIFFRACTION FROM DISORDERED SYSTEMS 137 

Figure 3.1 
on partial structure factors (after March and Tosi”). 

Charge-charge structure factor for molten RbCI. constructed from neutron diffraction data 

Here t is chosen empirically to yield correctly d3’  from the density derivative &lap.  
This assumption (2.9) has been considered recently in the context of the inverse 
problem by March and Senatore18, though, to date, no numerical results of this 
approximate theory of the inverse problem are available to the writer’s knowledge. 

In summary, a great deal of valuable information is contained in measurements 
of S ( k )  for liquids near the triple point. In view of the very fine experiments of Jiingst, 
Knuth and Hensel” on the structure factor of Rb and Cs along the coexistence curve 
of these expanded fluid metals, an extension of the above analysis for extracting &r) 
will be of considerable interest to study the variation of 4(r )  with thermodynamic 
state as the metal-insulator transition is approached*. This transition, especially in 
expanded fluid Na, has technologicalz0 as well as fundamental interest2’. 

3 

Page and Mika2* used the technique of isotopic substitution on CuCl to determine 
the partial structure factors S , , ,  S,, and S,,  of an ionic melt. This same technique 
is illuminating in showing, in molten alkali halides, the charge ordering known to 
exist in crystalline NaCl say. The appropriate combination of the corresponding pair 
functions of 8 ,  ,, gZ2 and y12 reflecting the charge-charge (QQ)  correlation function is 
(see, for example, March and T o ~ i , ~ )  

(3.1) 

IONIC MELTS: ESPECIALLY RbCl AND BaCI, 

Y Q Q ( 4  = 81 I + 8 2 2  - 2 8 1 2  

and the Fourier transform SQQ(k)  for molten RbCl is shown in Figure 3.1. 

* Note added in proof. Preliminary results have now been reported (J. A. Ascough and N. H. March 
(1990) Phys. Chem. Liquids 21, 251) for a low density metallic state of Cs. 
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138 N. H.  MARCH 

I t  is interesting that before the diffraction data on ionic melts became available, 
many of the important features of the structure factors of the molten alkali halides 
had been determined by Singer and c o - w o r k e r ~ ~ ~ ,  by computer simulation, reflecting 
the better understanding of force fields in these melts than in, say, liquid metals. 
Biggin and E n d e r b ~ , ~  have discussed at length the meaning of coordination numbers 
extracted from diffraction experiments. The coordination number is, though slightly 
ambiguous as these workers emphasize, reduced somewhat on melting. 

After this brief introduction to the structure of a two-component liquid, we shall 
comment in a little more detail on what can be gleaned from partial structure factor 
measurements on BaCI,. This material is in the class of fast-ion conductors having, 
in the solid state, the fluorite structure. As March and Tosi26 have emphasized, the 
partial structure factors in the liquids already reflect the fact that, on freezing, BaCI, 
will have dominant Frenkel defects, in contrast to RbCl with dominant Schottky 
defects. In other words, liquid structure already, just above the melting temperature, 
has fingerprints of the defect structure to be expected on freezing. 

March and Tosi2' have given a zero-order theory, related to the work of 
Ramakrishnan and Yussouff2* for the freezing of simple liquids such as Ar  and Na, 
for the freezing of BaCI, into a fast-ion conducting state. Just below the melting 
point, making admittedly drastic assumptions about the order parameters in k space, 
they can characterize the lattice liquid formed by the anions (i.e. liquid in the periodic 
potential created by the frozen cation sub-lattice) by Fourier components of the 
density at the first reciprocal lattice vector. This can be related to structure through 
the admittedly approximate linear response theory to yield 

(3 .2 )  

As was to be expected, the coupling of the cation sub-lattice 1 to the liquid density 
modulations p Z c  is determined by the Ornstein-Zernike cross-correlation function 
F12(G). The denominator in Eq. (3 .2)  represents, in essence, the response function of 
the system 2, i.e. the anions in BaCl,. p Z 1  denotes the mean anion singlet density in the 
liquid phase etc. D'Aguanno et al.29 have subsequently studied this problem 
numerically and later work of Rovere and Tosi3' has been concerned with the fast-ion 
transition itself. However, for some cautionary remarks about the truncation of the 
sums over reciprocal lattice vectors, see Haymet et d3' ,  and further work is clearly 
called for in this area. 

4 X-RAY AND ELECTRON SCATTERING FROM 
DISORDERED SOLIDS 

Having introduced the partial structure factors of two-component liquids, with 
reference to RbCl and BaCl,, we turn to consider diffraction from disordered solids. 
Again, it will be helpful to do i t  by examples: we mention here SiO;'. amorphous 
Si33 and amorphous C33.34. While, we believe, the scattering theory outlined below 
will have more general usefulness, it has been applied most extensively so far to 
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DIFFRACTION FROM DISORDERED SYSTEMS 139 

Figure 4.1 Contours of equal electron density for a Si-Si bond as in amorphous Si, starting from sp’ 
hybrids built from the 3s and 3p SI atomic wave functions. Linear combination of atomic orbitals (LCAO) 
method is then employed to construct figure (after Stenhouse e /  d .33)  (b) Superposition of isolated atom 
densities for comparison with bond in (a). 

amorphous Si”, and so we shall focus almost exclusively on this disordered solid. 
However, to introduce the discussion of amorphous Si, i t  is relevant to note that the 
work on SiO, constructed the three partial structure factors for vitreous silica from 
random network models due to Bell and Dean35. In addition to the model structure 
factors thereby obtained, X-ray scattering factors must be specified in order to 
calculate the X-ray intensity (cf Eq. (4.2) below). In  Ref. 32, though i t  was recognised 
that chemical bonding should eventually be included explicitly, neutral Si and 0 
atomic scattering factors were employed. I t  was noted from the work of King3’ that 
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140 N. H. MARCH 

the height of the first peak in the X-ray scattering is significantly altered by using 
instead the scattering factors for Si4+ and 0'-. Following this brief comment on 
vitreous silica, we turn to the main example of the section, namely amorphous Si. 

Given the nuclear-nuclear pair correlation function g(r) for amorphous Si, one 
could attempt to use Eq. (1.1) with f ( k )  replaced by a neutral atomic scattering factor 
for Si (see Figure 4 of Ref. 33). With a suitable continuous random network (CRN) 
model for g(r), one calculates S ( k )  from Eq. (1.2) and hence the X-ray intensity I x ( k ) .  
The conclusion is, unambiguously, that the first peak in the X-ray intensity to too 
low to agree with experiment. When the same CRN model is used to calculate the 
electron diffraction intensity using33 

(4.1) 

then the first peak is too high to agree with experiment. 
The reason for the disagreement is not far to seek in qualitative terms. Figure 4.l(a) 

shows contours of equal electron density for a Si-Si bond as in amorphous Si, starting 
from atomic sp3 hybrids built from the 3s and 3p wave functions. Then the linear 
combination of atomic orbitals (LCAO) method is employed to construct Figure 
4.l(a). If we compare these electron density contours with those of Figure 4.l(b), 
which is merely a superposition of isolated atom densities33, the marked difference 
between this superposition density and that of the LCAO density shown in Figure 
4.l(a) is the absence in (b) of the closed, almost spherical, contours round the bond 
centre. 

I , (k)  = const k-4S(k)[Z - fH, , , i , (k ) ]2 ,  

4.  I 
The LCAO contours indicate that to  model the covalent bond one should include, 
in addition to the superposition of spherical charge clouds on each Si nucleus, a 
spherical charge distribution at the bond centre, an idea exploited by Phillips3' and 
other workers. Whereas Phillips was concerned with dielectric properties and lattice 
dynamics, and was able to model the bond charge as a point charge, the concern 
here is modelling diffraction intensities which will evidently require an extended 
spatial bond charge distribution. Before discussing the form of this, let us emphasize 
next that this immediately leads to the introduction of a further structural character- 
ization, the bond centre, to supplement S ( k )  discussed already. 

The same CRN model was used therefore to calculate the nuclei-bond centre partial 
structure factor S,,(k) and the bond centre-bond centre structure factor Sbb(k): these, 
taken from Ref. 33, are shown in Figure 4.2, along with S ( k ) .  

Once the scattering factors,f,(k) and Jb(k) of the 'atomic' blobs (fa) and the bond 
charge (fb) are known, then the scattering is as from a two-component liquid and we 
can write for the X-ray intensity with suitable n ~ r m a l i z a t i o n ~ ~  

Efects of' chemical bonding on difraction intensities 

= + 2fb2(k)Sbb(k) + 2(Snb(k) - ) f ~ ( ~ ) , f , ( ~ )  (4.2) 
with f ,  = 4fn. 
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DIFFRACTION FROM DISORDERED SYSTEMS 141 

-1 L 

Figure 4.2 
amorphous Si (2)  S, , , (k)  is nuclei-bond structure factor while (3) S,,(k) is that for bond-centre structure. 

Partial structure factors for amorphous SI. ( I )  S ( k )  is the nuclear--nuclear structure factor for 

Similarly, the electron scattering intensity is given by 

I , ( k )  = const K4.j[Z - j J k ) ] ’ S ( k )  

$- 2 f h ( k ) 2 s b b ( k )  - 2 [ S n b ( k )  - l1Cz - f , ( k ) l f b ( k ) ) .  (4.3) 

in Eq. (4.3), Eq. (4.1) is regained. Equations (4.2) and 
(4.3) are the basic equations for modelling the diffraction intensities, to allow 
for the effects of chemical bonding. 

The choice of .I; and .fb is fully discussed in Ref. 33, and these form factors 
are simply plotted in Figure 4.3. These, in turn, lead back to the equal electron density 

Putting f b  = 0 and 1;. = 

I 

Figure 4.3 Form factors/; and fh appearing in intensity Eq. (4.2). . fo(k)  is upper curve 
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142 N. H. MARCH 

0 1 5 

Figure 4.4 X-ray scattering intensity for amorphous silicon, using continuous random network model. 
( I )  Contribution from Si-Si correlations (2) From Si-bond-centre correlations ( 3 )  Bond-centre contribution 
(4) Total predicted intensity (5) Experiment”. 

contours which are practically indistinguishable from those in Figure 4.l(a). Reference 
to Figures 4.4 and 4.5 show how the inclusion of the bond charge brings theory and 
experiment into substantial agreement for both X-ray and electron diffraction. 

Though, no doubt, some refinements of structure and of electron distribution could 
now be made, we emphasize in the present context that one can gain confidence in 
the CRN structural model (with odd membered rings33) and in the detailed treatment 
of chemical bonding. A model built from ordered units turns out to be clearly inferior 
to the CRN model, while a superposition of spherical blobs on the Si nuclei fails to 
account for the diffraction intensities. As shown, in fact, in Ref. 33, use of the bond 
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DIFFRACTION FROM DISORDERED SYSTEMS 143 

1‘ 
I ’  

I \  
I ‘  
I \  

I ‘  

k ( A 4 ’ ]  
Figure 4.5 
Labelling ( I )  to (4) as in Figure 4.4. (5) E~perirnent’~.  

Electron scattering intensity for amorphous silicon using continuous random network model. 

distribution in Figure 4.l(c) accounts rather well for the ‘forbidden’ 222 reflection 
in crystalline Si. Naturally in the crystal, however, modern density functional theory 
combined with Bloch’s theorem, leads to fully first principle electron densities, which 
can again be used to calculate Bragg reflection intensities3’. 

Having emphasized that there is important information about chemical bonding 
in X-ray and electron diffraction intensities, let us return to liquid metals, and the 
important problem of electron-electron correlations among the valence electrons. 
Again, we shall find a (this time ‘resonating’) bond picture emerging, following earlier 
ideas of P a ~ l i n g ~ ~  on bonding in metals. 
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144 N. H. MARCH 

5 ELECTRON-ELECTRON PAIR CORRELATIONS IN LIQUID METALS 

Returning to simple liquid metals like Na, these are really two-component liquids, 
Na' ions and valence electrons4'. Thus, again, one wants to describe the structure 
in terms of three structure factors: the nuclear-nuclear structure factor S(k) ,  the 
valence electron-ion term S,,(k) and, of prime interest here, the electron-electron 
structure factor S,,(k)4'. 

Following Ref. 41, one writes the differential cross sections for X-ray and electron 
scattering in the forms 

($), = const S,(k)  

and 

const ($)? = k, S,(k).  

Then, S J k )  can be written4' 

Here f ( k )  is the Fourier transform of the electron density in the core, while 

f ( k )  = z - f ( k )  

with Z the atomic number. 
Thus, at least in principle, measurement via Eqs. (5.1) and (5 .2)  of S,(k) and S,(k),  

plus use of S ( k )  determined by neutrons as already discussed in Section 2, will allow 
the electron-electron structure factor S , , , ( k )  to be determined from Eq. (5.3),  given a 
core scattering factor f ( k ) .  

In practice, a number of difficulties remain42*433*3 . H owever, by studying the main 
peaks of S,(k)  and S(k) ,  it was originally argued in Ref. 41 that the X-rays were 
showing behaviour more like a 'Bragg peak' than the neutrons; the conclusion being 
that there was spatially more extensive short-range order of the electrons than the 
ions. 

More recent work of D o b ~ o n ~ ~  and of Johnson4' has pressed the idea of Ref. 41 
further for liquid Na and K respectively near their melting points. Both workers 
present evidence for short-range ordering over substantial differences and local 
coordination like that of a face-centered cubic (fcc) lattice. While in Ref. 41, Wigner 
electron correlations were referred to, these would lead to body-centered cubic (bcc) 
ordering. 

Therefore, subsequent to the work of D o b ~ o n ~ ~ ,  March and T ~ s i ~ ~  have presented 
an interpretation of the above fcc-like ordering in terms of a combination of both 
electron-electron and electron-ion interactions. They point out that a model which 
can explain the observed reflections characteristic of a fcc lattice in liquid Na and K 
can be built up by: 
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DIFFRACTION FROM DISORDERED SYSTEMS 145 

a) Using sp3 type bonding charges, with Pauling resonance invoked between 
occupied and unoccupied bonds and 

b) Assuming, once local electron coordination characteristic of such bonds is 
formed, Wigner-type lattice ordering4' can propagate the fcc lattice over 
distances of 30 to 40 A. 

In a little more detail, March and Tosi propose their model, after examining the 
X-ray diffraction pattern to be expected from a number of different models for the 
arrangement of bond charges. Models in which bond charges are placed between (a) 
all near-neighbour ions or (b) all next near-neighbour ions can be excluded. This is 
because, unless one breaks the correlations between first neighbour ions, one will 
necessarily obtain a diffraction pattern characteristic of a bcc structure, given that 
local ion ordering in the liquid just above the freezing point resembles that in the 
(bcc) crystal. Such a breaking of correlations has in fact been examined but still does 
not lead to an fcc diffraction pattern. 

However, a model that does lead to fcc reflections is to consider bond charges 
between each ion and four of its near-neighbours, in a tetrahedral configuration. 
Again, in the language of chemical hybridization used in Section 4, we could think 
of mixing 3s and 3p atomic orbitals in Na say, with sp3 hybridization once again. It 
is cautioned in Ref. 46 that atomic orbitals are poor as a starting point for Na, 
Wannier orbitals being more appropriate. 

The tetrahedral configuration proposed4' is shown in Figure 5.1. The electron 
'bond charges' add up to a fcc lattice. The 'unoccupied' bonds to the remaining 4 
corners of the cube from the body centre would have to resonate with those drawn 
in Figure 5.1, in the manner of P a ~ l i n g ~ ~ .  

Figure 5.1 Electronic model proposed by March and Tosi"' to interpret diffraction experiments from 
liquid Na  near freezing. Bond charges (solid circles) are depicted schematically between each ion (open 
circles) and four of its near-neighbours. in tetrahedral array. 'Unoccupied' bonds to remaining 4 corners 
of cube would have to resonate3q with those drawn in the Figure. 
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6 SUMMARY AND FUTURE DIRECTIONS 

Having surveyed, by specific examples mainly, the information that can be derived 
from diffraction measurements on disordered systems, we wish to conclude by 
emphasizing areas that seem potentially fruitful for the future. 

First of all, regarding the ‘inverse problem’ of Section 2.3,  we have already stressed 
for a liquid metal like Na the interest in studying the variation of the force law with 
thermodynamic state along the coexistence curve. Of course, one has to recognise 
here that, eventually, as the critical point is approached, critical fluctuations ‘take 
over’ and numerous, though by no means all, properties become insensitive to  the 
force law. More obviously, in the same area, accurate neutron diffraction data over 
a wide range of monentum transfer k should now allow effective pair interactions to 
be extracted from liquid state experiments for the technologically important transition 
metals. 

Still on liquid metals, further understanding of supercooled liquids is clearly 
needed. A particularly relevant example in the present context is the work of 
Mountain4’ on supercooled liquid Rb. Though some diffraction experiments have 
been reported on liquid Mountain points out the difficulties to date in 
performing clean experiments of this type on simple supercooled liquids, and therefore 
the interest in  computer simulation of this problem. By obtaining g(r)  for Rb, 
Mountain identifies two types of change as the temperature is lowered: 

i )  ‘Sharpening’ of the structure, which occurs in both equilibrium and supercooled 
liquid states: 

ii) Evolution in the structure in the form of a shift in the position of the first 
maximum of g ( r )  to larger r .  This occurs in the equilibrium liquid but is 
not perceptible in  the supercooled liquid4’. 

Mountain notes in relation to the above that g(r)  represents the average environ- 
ment of a particle. In the supercooled region, the near-neighbour environment 
becomes more sharply defined in space but does not shift its position as i t  does in the 
equilibrium liquid. That is to say, the local environment stops evolving, in the sense 
of a peak shift, once the freezing temperature is reached and in the supercooled region 
this fully developed liquid structure can only become more sharply defined until 
crystallization intervenes. Also in Ref. 48, following earlier s t ~ d i e s ~ ~ . ~ ’ ,  Mountain 
reiterates (cf. Section 2.2 above) that another empirical freezing criterion comes 
back in terms of the ratio R of the magnitude of g(r)  at the first minimum 
to the magnitude at the first maximum as R = 0.20 0.01. Further, R is linear with 
temperature for liquid states. Clearly, this work prompts further studies, both 
scattering experiments and approximate liquid state theory, on both the liquid-crystal 
phase transition and on the less well explored area of supercooling. 

Related to this, there has been a resurgence of interest in the glassy transition. The 
work of Bernu et u I . ~ ~ ,  again by computer experiment, is notable; however, so far 
the generalization to the dynamic structure factor has been the most fruitful approach 
here and it would take us too far from our main theme to give more than a few 
central references here53.54. 
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DIFFRACTION FROM DISORDERED SYSTEMS I47 

Finally, let us return to chemical bonding in disordered systems. While in materials 
like amorphous silicon and carbon, the existence of well defined covalent bonds has 
been recognised for decades, it is, of course, extremely interesting that evidence for 
chemical bonding in low electron density metals like the alkalis is building up strongly 
(see Section 5 for liquid Na: and Refs. 55 and 56 for the crystalline phase of this sp 
metal). 

Some stimulation for investigating sp metals further in the solid state has come 
from a desire to find a theory of superconductivity which would embrace both the 
recently discovered high T, ceramic oxides” and the simple metals. As an example, 
the work of Messmer’’ on crystalline Be metal can be sited; here, as for the liquid 
alkalis discussed in Section 5, both chemical- and Wigner-lattice-type arguments are 
invoked for strong spatial correlations between valence electrons; the present writer5’ 
has drawn attention recently to the possible link between Dobson’s analysis42 
of diffraction data on the trivalent liquid metal Al and Messmer’s ideass8 on divalent 
crystalline hexagonal-close-packed Be. There seems no doubt that there is currently 
a great deal more to be done in exploiting fully, by a combination of diffraction 
experiments and first-principles theory, just what we can learn as to the combined 
role of electron-ion and electron-electron interactions in both ionic structural 
correlations and pair correlations between valence electrons. Chemical insight is 
surely going to be of great importance in these future studies, even in metals like Na 
and A1 which were thought, for a very long time, to be almost ‘ideal’ examples 
of electron delocalization. 
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